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ABSTRACT 

It is shown that, almost surely, for all natural n, there are points which the plane 
Brownian motion visits exactly n times. 

A point x is k-multiple (respectively strictly k-multiple) for a map [ if, and 

only if, 

Card/-l{x} = > k (resp. = k). 

Let Z be a plane Brownian motion. (All Brownian motions discussed here are 

continuous, and defined on R+ = [0,~[.) 

Dvoretzky, Erd6s and Kakutani proved in [2] that, with probability 1, for all 

natural n, Z admits n-multiple points. With this at hand, we provide a simple 

proof to the following 

THEOREM. Almost surely, [or all natural n, Z admits strictly n-multiple points.* 

Fix a natural n = 2. We shall see that, almost surely, Z admits at least one 

strictly n-multiple point. 
Suppose Z(to) has n-multiple points (which, by [2], is the case for almost all 

to). So there are n mutually disjoint closed rational subintervals of R÷ whose 

images under Z(to) have a common point of intersection. (A rational interval is 

one with rational endpoints.) Since the set of finite sets of rational intervals is 

only countable, it is enough to show that if I1,. . . ,I ,  are mutually disjoint 

' One of us proved recently ([1]) that if S is a closed subset of R÷ without interior points, then, 
almost surely, there exist points in the plane whose inverse image under Z is order-similar to S. This, 
of course, is stronger than our theorem (to obtain the almost sure existence of strictly n-multiple 
points, take S = {1, . . . ,  n}), but its proof (the one in [1], at least) is relatively involved. 
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compact subintervals of R÷, then, almost surely, if A ~ Z(I1)O ... N Z(I , )  is 

nonempty, then there is a point p E A which is strictly n-multiple for Z. 

Suppose I~ are as above, and set I = U I~. 

If K is a nonempty compact subset of the plane R 2, let p(K) denote the highest 

of the rightmost points of K, i.e., p(K)= (a,b), where 

a = max{x [(x,y) ~ K for some y}, 

b = max{y {(a ,y)E K}. 

We claim that, almost surely, if A is nonempty, then p(A)  is a strictly 

n-multiple point of Z. This can be translated into the two following facts. 

FACT1. Almost surely, if A # 0 ,  then p(A ) ~_ Z(R+\I). 

FACT2. Almost surely, i r A # O ,  then, for all IE{1 ..... n}, p(A ) is simple 
( =- strictly 1-multiple) [or Zix, ( =- the restriction of Z to It). 

Fact1 is a consequence of 

ProPosmoN~. Let X be a d-dimensional Brownian motion (d >= 2), let F be a 
closed subset of R÷, and let v be a random variable measurable with respect to 
or(XiF), with values in R d, and such that if 0 ~ F then, almost surely, v # Xo. 
Then, almost surely, v ~ X(R+\F). 

Observe that for an interval ]a,/~ [ included in R+\F, v is almost surely not in 

X(]a, ~ [).t But R+\F is the union of the rational open subintervals of R÷ that it 

contains. 
To deduce Fact~, we substitute Z , / ,  p (A) for X, F, v, respectively. The fact 

that p(A)  is defined only if A is nonempty is of course of no importance. (We 

can, for instance, let p (~ )  be any fixed point of R2.) But we have to show that 

p(A)  is measurable with respect to (r(ZII). 

For a number 8 > 0, a subset of the plane is a 8-square if, and only if, it is of 

the form [i&(i + 1)f] x [j&(j + 1)f], where i and j are integers. Let A,  denote 

the (finite) union of all f-squares that intersect with A. It is a technical exercise 

to check that p ( A ) =  lim,_~o+p(A,) and that," for any f-square R, the event {A 

encounters R} is in cr(Zl~), so p(As) is measurable with respect to cr(Zi, ). The 

measurability of p(A)wi th  respect to o'(Zl~)follows immediately. 

* A technical argument can go as follows. Note that v measurable with respect to X -= c,(X4a.~l..ot). 
Let ,r be a version of P('/X). For almost all o~, for any x in the plane, ir(x E X(]a,/3[))((o)=0. 
Nothing forbids taking x = v(oJ). All we have to do now is notice that the probability that v belongs 
to X(la,/3[) is the expectation of ,r(v((o)E X(la,#D). 
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Now we turn to Fact2. 
Let Y be a plane Brownian motion independent of Z. Fix some l in {1 . . . . .  n}, 

and let B denote the intersection of Y(Iz) with the compact set 

N,.~tl ...... ~\t~Z(I,.), which is independent of Y. Fubini's theorem enables us to 

conclude that in order to establish Fact2 it suffices to show that, almost surely, if 

B is nonempty, then p(B) is a simple point of Y. So our problem is reduced to 

proving the following 

PROPOSITION2. Let K be a compact subset of the plane. Then, almost surely, if 
C -  Y([0,1]) t9 K is nonempty, Y admits p(C) as a simple point. 

PROOF. For t ER÷, let 

and, on {(7, = O}, let 

on {(7, = O}, let S, = 0. 

(7, = Y([O, t ] )  n K 

S, = inf{s => 01 Y, = p(C,)}; 

By the above definition, it is clear that, for all s in [0,S~[, Y,# Ysl. 
Observe that, for t E R+, Ys, is measurable with respect to ~r(Ylto.,]), so, almost 

surely, Ys,~ Y(]t,~[). (Note that (Y,+.- Y,),+ is a plane Brownian motion 

independent of (Y)M,  and the probability that it hits a given point over ]0,oo[ is 

zero.) So, almost surely, for all rational q in R+ (and, in particular, for rational q, 

such that Sq = S 0, Ysq ~- Y(]q, °°D. But ]S~, ~[ = O q ,a,io,a~>s,]q, oo[, and we deduce 
that, almost surely, 

Ys, ~: Y([O, S~[ U IS1, oD[), 

in which case Ys, is a simple point of Y. 

All we have to do now is observe that if Y([O,1]) encounters K, then 

p(C) = Ys,. 

COROLLARY. Almost surely, the restriction of Z to any subset of R÷ whose 
interior is nonempty has strictly n-multiple points, which are also strictly n-multiple 
points of Z. 

REMARKS. (1) Modifying very slightly the above considerations, one can 

prove that, almost surely, there exist points in the plane whose inverse image 

under Z is order-similar to N. Obviously, such points are strictly No-multiple for 

Z. For strictly No-multiple points whose inverse image is bounded, the technique 

of the present paper is probably insufficient. (See [1].) 
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(2) One is likely to feel that (n + 1)-multiple points are "harder" to obtain than 

n-multiple ones, so "most" n-multiple points of Z are not (n + 1)-multiple and 

are, consequently, strictly n-multiple. 

A possible sense of the above "most" is a Hausdorff measure one. In a recent 

work, Le Gal ([3]) indicated a way of proving a conjecture of Taylor ([4]) to this 

effect. According to Taylor's conjecture, if M, is the set of n-multiple points of 

Z, and if h,(x)= x2(logl/x) ", then, almost surely, for all n, the h.-Hausdorff 

measure of M, is 0 if a _-< n, ~ if o~ > n. 

Considering things from another angle, n-multiple points of Z may be 
expected to be "easier" to hit than (n + 1)-multiple ones. Let It, I2, . . . ,L be 

mutually disjoint compact subsets of R÷, and let X be a right-continuous random 

process defined on R+, taking values in the plane, independent of Ztu1 ~. Let 

T = inf{t >=OIX, E A Z(h)}. Very slight modifications of our arguments show 

that, almost surely, if T is finite, then Xr is a strictly n-multiple point of Z. 
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